Curve-Fitting

The Science and Art of Approximation
 ...just the color figures for those who got the $B \& W$ printed book...

by D. James Benton

Copyright © 2016 by D. James Benton, all rights reserved.

> Microsoft, Windows, Excel, and Visual Basic are trademarks of the Microsoft Corporation. The acronym VBA stands for Visual Basic® for Applications and is the macro language used by Excel®.

Foreword

This is a how-to guide on the approximation of data. While this task is often viewed as trivial-simply open Excel ${ }^{\circledR}$ and select Add Trendline-developing an accurate and robust approximation can be quite complex, especially when the shape of the data doesn't correspond to one of the functions built into Excel®. Perhaps the most common example where Excel® is deficient would be data that approaches one or more asymptotic values. The asymptotic values may be constant or infinite. In either case, none of the functions built into Excel ${ }^{\circledR}$ exhibit this behavior.

Efficient and accurate approximation of multi-variable data can be quite challenging. While Excel® can handle such data with the LINEST() function, this capability is limited. Knowing what to feed into the LINEST() function requires an understanding of the principles presented in this book. Many examples are provided and Excel® is used wherever possible to illustrate them.

> All of the examples contained in this book, (as well as a lot of free programs) are available at...

	A	B	C	D	E	AA	$A B$	$A C$
1	Typical Condenser Curves					1st Order LINEST on P		
2	Tin	Duty	Pres.	1st	2nd	0.828249754	0.047653	-2.524188839
3	\%	\%	in Hg	i Hg	$\mathrm{i} \cdot \mathrm{Hg}$	0.033421384	0.000853	0.069616551
4	55	0\%	0.52	0.10	0.59	0.9493066 .41	0.170416	\#N/A
5	55	5\%	0.54	0.14	0.60	1867.828522	197	\#N/A
6	55	10\%	0.56	0.18	0.60	108.4898765	5.721217	\#N/A
7	55	15\%	0.58	0.22	0.61			
8	55	20\%	0.59	0.26	0.62			2nd Order LIMES
9	55	25\%	0.61	0.30	0.63	0.265452599	0.018821	0.000673961
10	55	30\%	0.63	0.35	0,64	0.014042601	0.00032	8.22771E-06
11	55	35\%	0.65	0.39	0.65	0.993098606	0.023036	\#NUA
12	55	40\%	0.67	0.43	0.67	43005.64703	194	\#N/A
13	55	45\%	0.69	0.47	0.68	114.1081446	0.102949	\#N/A
14	55	50\%	0.70	0.51	0.70			
15	55	55\%	0.72	0.55	0.72			
16	55	60\%	0.74	0.59	0.74	0.32385156	0.002651	0.000223898
17	55	65\%	0.76	0.64	0.76	0.010414942	0.000232	$5.3251 \mathrm{E}-06$
18	55	70\%	0.78	0.68	0.79	0.993951926	0.005376	\#NUA
19	55	75\%	0.80	0.72	0.81	439119.0478	190	\#N/A
20	55	80\%	0.83	0.76	0.84	114.2056032	0.005491	\#N/A
21	55	85\%	0.86	0.80	0.86			

Chapter 11. Contours

2nd Order Approximation
Efficiency
-0.780-0.800

- 0.760-0.780
-0.740-0.760
$0.720-0.740$
-0.700-0.720
0.680-0.700
-0.660-0.680
- 0.640-0.660
-0.620-0.640

