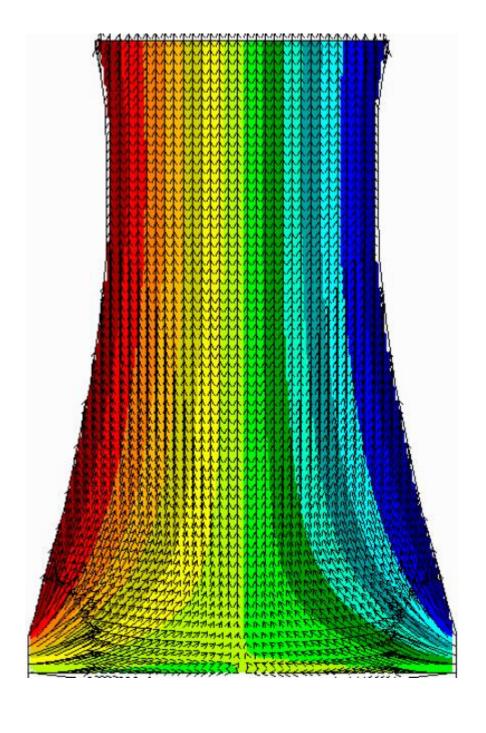
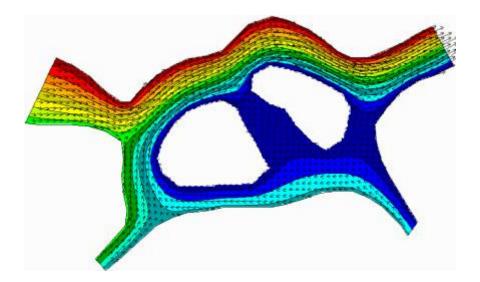
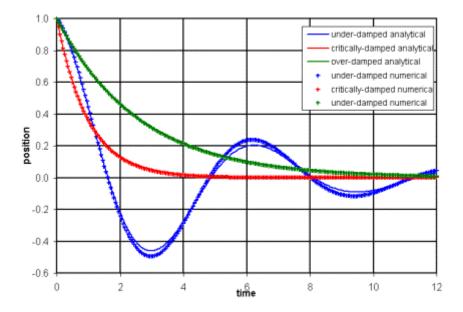
Numerical Methods for Solving Differential Equations

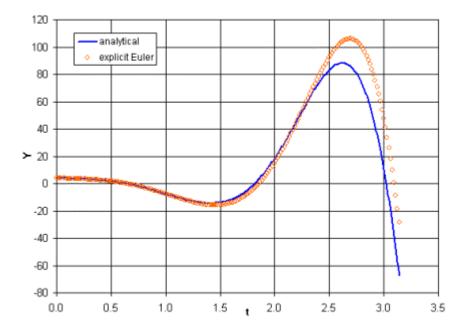
...just the color figures for those who got the B&W printed book...

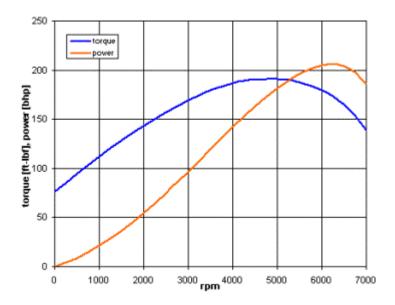

D. James Benton

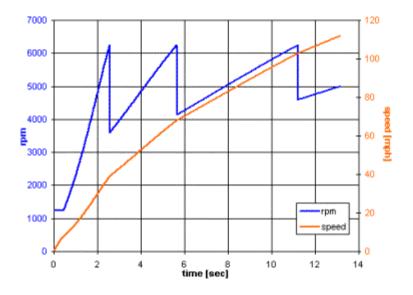
Copyright © 2018 by D. James Benton, all rights reserved. Foreword

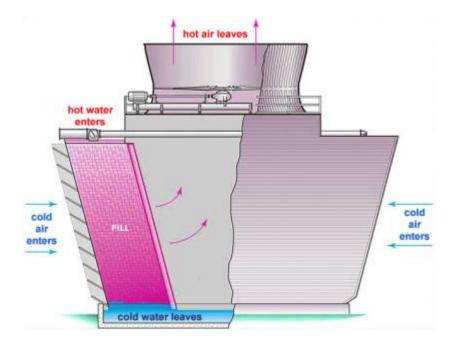

If you've struggled to understand the finite element method, then you must read this book. I don't cover a lot of theory in this text. It's mostly a compilation of examples. The one theoretical aspect of numerical methods for solving differential equations that I will present is the finite element method. This powerful technique is more often than not buried under a mountain of esoteric details that make it inaccessible to most students of applied mathematics. I aim to reveal, not obfuscate. I trust you will find this book helpful in that respect.

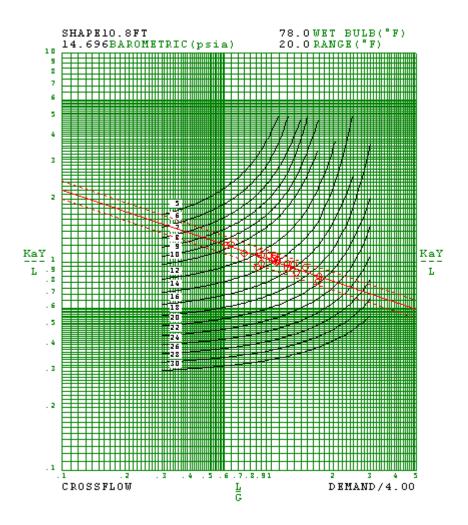

Understanding applied mathematics results in a richer appreciation of the world and how it works. Those who see only disconnected objects and forces miss the elegance with which such things can be described in the versatile language we call calculus. Differential equations describe the way objects and forces interact. While there are many analytical techniques for solving such problems, this book deals with numerical methods. You must understand some of the former in order to appreciate the latter. Rather than covering the minutia of every obscure method, this book will focus on what works consistently and efficiently. This is a compilation of examples, not a textbook on theory. I trust you will find it interesting and useful.

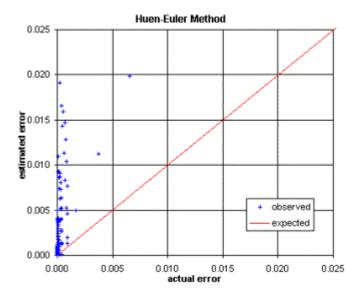

All of the examples contained in this book, (as well as a lot of free programs) are available at... <u>http://www.dudleybenton.altervista.org/software/index.html</u>

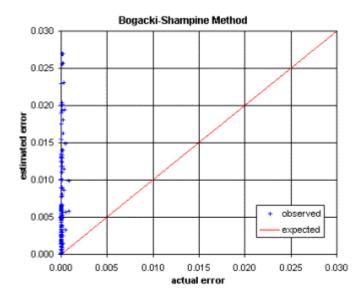


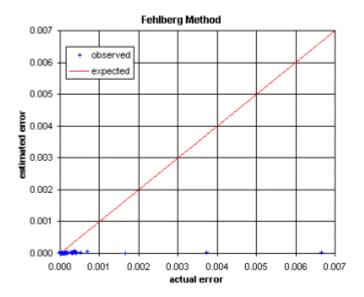


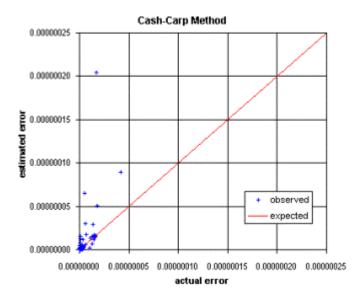


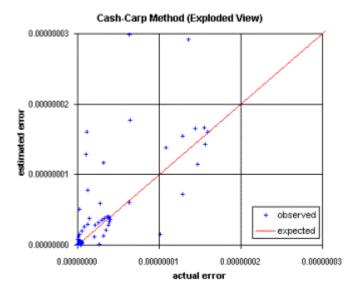


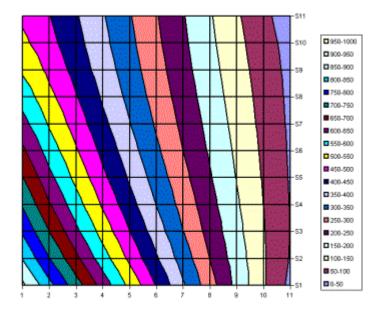


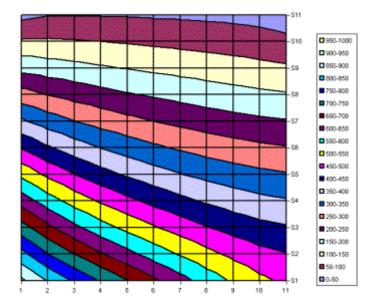


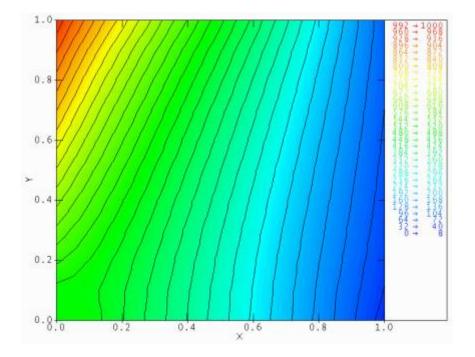


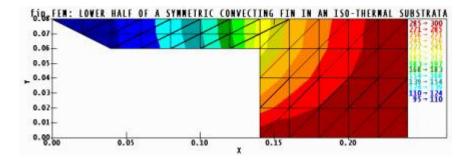

								Tw			
Та							148	148	148	148	
78	102	116	124	128	132	115	115	124	130	131	
78	92	99	108	115	118	97	104	108	113	121	
78	86	92	98	103	108	88	96	- 99	104	110	
78	82	88	92	96	101	84	89	93	98	102	
78	80	84	87	91	94	81	85	89	92	97	
						11	89				
						Hw					
	Ha							260.1	260.1	260.1	
41.6	74.7	107.4	131.5	149.2	165.8	104.7	105.8	132.7	157.3	162.5	
41.6	59.3	70.8	86.9	103.7	114.1	66.8	79.0	87.5	100.9	122.9	
41.6	50.5	58.7	68.0	77.6	88.2	53.6	64.4	69.2	79.0	93.4	
41.6	46.0	52.8	58.6	64.5	73.4	48.0	54.5	59.9	68.0	74.5	
41.6	44.0	48.0	51.8	57.5	62.2	45.2	49.3	54.6	59.1	66.2	

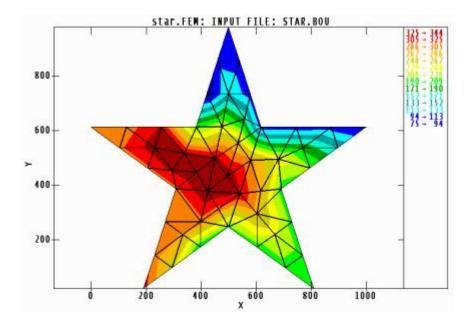


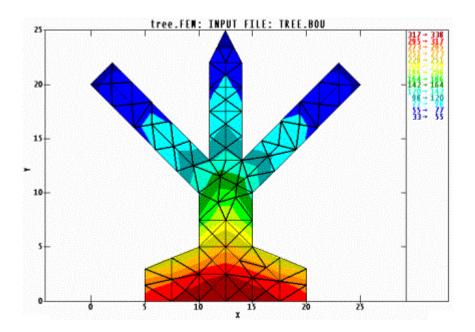


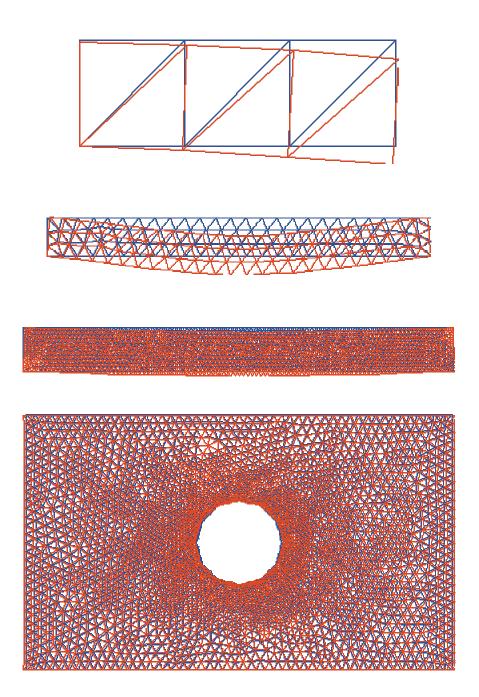


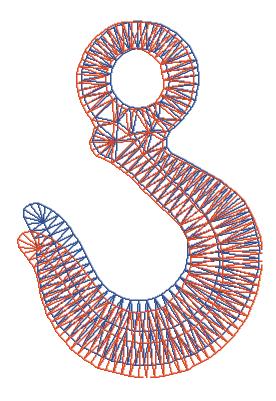



	A	в	C	D	E	F	G	H	1212	J	K	L	M
1		Temperatures											
2		1000	900	800	700	600	500	400	300	200	100	0	
3	1000	911	816	722	629	537	446	357	270	185	105	37	0
4	950	847	751	661	573	489	406	325	248	174	106	47	0
5	900	794	699	612	529	450	374	301	231	165	103	49	0
6	850	746	654	571	493	419	348	281	217	156	99	48	0
7	800	701	614	536	462	393	327	264	204	148	95	46	0
8	750	659	578	505	436	371	309	250	193	140	90	- 44	0
9	700	618	545	477	413	352	293	237	184	133	86	42	0
10	650	579	514	453	393	335	280	226	175	127	82	- 39	0
11	600	543	487	432	376	322	269	217	167	120	- 77	37	0
12	550	511	466	415	363	311	260	209	160	114	71	32	0
13	500	490	452	405	355	304	253	203	154	107	62	23	0
14		500	450	400	350	300	250	200	150	100	50	0	
15					Th	ermal	Condu	otivitie	s				
16		0.50	0.54	0.57	0.62	0.66	0.71	0.76	0.81	0.87	0.93	1.00	
17	0.50	0.53	0.57	0.61	0.65	0.69	0.73	0.78	0.83	0.88	0.93	0.98	1.00
18	0.52	0.56	0.59	0.63	0.67	0.71	0.75	0.80	0.84	0.89	0.93	0.97	1.00
19	0.54	0.58	0.62	0.65	0.69	0.73	0.77	0.81	0.85	0.89	0.93	0.97	1.00
20	0.56	0.60	0.64	0.67	0.71	0.75	0.79	0.82	0.86	0.90	0.93	0.97	1.00
21	0.57	0.62	0.65	0.69	0.73	0.76	0.80	0.83	0.87	0.90	0.94	0.97	1.00
22	0.59	0.63	0.67	0.70	0.74	0.77	0.81	0.84	0.87	0.91	0.94	0.97	1.00
23	0.62	0.65	0.69	0.72	0.75	0.78	0.82	0.85	0.88	0.91	0.94	0.97	1.00
24	0.64	0.67	0.70	0.73	0.76	0.79	0.82	0.86	0.89	0.92	0.95	0.97	1.00
25	0.66	0.69	0.71	0.74	0.77	0.80	0.83	0.86	0.89	0.92	0.95	0.98	1.00
26	0.68	0.70	0.72	0.75	0.78	0.81	0.84	0.87	0.90	0.92	0.95	0.98	1.00
27	0.71	0.71	0.73	0.76	0.78	0.81	0.84	0.87	0.90	0.93	0.96	0.98	1.00
28		0.71	0.73	0.76	0.79	0.81	0.84	0.87	0.90	0.93	0.97	1.00	








	Cra	properties							
matrix A					mat	rix B	∆t	1.00	
2.0	-0.5	0.0	0.0	0.0	0.5	0.0	0.0	Δx	1.00
-0.5	2.0	-0.5	0.0	0.5	0.0	0.5	0.0	ρ	1.00
0.0	-0.5	2.0	-0.5	0.0	0.5	0.0	0.5	С	1.00
0.0	0.0	-1.0	2.0	0.0	0.0	1.0	0.0	k	1.00
calculated parameter, β=k∆t/(ρC∆x²)									

