Numerical Methods:

Nonlinear Equations, Numerical Calculus, & Differential Equations

...just the figures for those who got the B&W text...

by D. James Benton

Copyright © 2018-2021 by D. James Benton, all rights reserved.

Newton-Raphson Method

Bisection Search

X=0.1 Y=0.2 Z=0.3

X=0.1 Y=0.2 Z=0.3

X=0.1 Y=0.2 Z=0.3

								Tw			
		T	а	148	148	148	148	148			
78	102	116	124	128	132	115	115	124	130	131	
78	92	99	108	115	118	97	104	108	113	121	
78	86	92	98	103	108	88	96	99	104	110	
78	82	88	92	96	101	84	89	93	98	102	
78	80	84	87	91	94	81	85	89	92	97	
							11 approach				
		Н	а			260.1	260.1	260.1	260.1	260.1	
41.6	74.7	107.4	131.5	149.2	165.8	104.7	105.8	132.7	157.3	162.5	
41.6	59.3	70.8	86.9	103.7	114.1	66.8	79.0	87.5	100.9	122.9	
41.6	50.5	58.7	68.0	77.6	88.2	53.6	64.4	69.2	79.0	93.4	
41.6	46.0	52.8	58.6	64.5	73.4	48.0	54.5	59.9	68.0	74.5	
41.6	44.0	48.0	51.8	57.5	62.2	45.2	49.3	54.6	59.1	66.2	

										and the same party of			
1	Temperatures												
2		1000	900	800	700	600	500	400	300	200	100	0	
3	1000	911	816	722	629	537	446	357	270	185	105	37	0
4	950	847	751	661	573	489	406	325	248	174	106	47	0
5	900	794	699	612	529	450	374	301	231	165	103	49	0
6	850	746	654	571	493	419	348	281	217	156	99	48	0
7	800	701	614	536	462	393	327	264	204	148	95	46	0
8	750	659	578	505	436	371	309	250	193	140	90	44	0
9	700	618	545	477	413	352	293	237	184	133	86	42	0
10	650	579	514	453	393	335	280	226	175	127	82	39	0
11	600	543	487	432	376	322	269	217	167	120	- 77	37	0
12	550	511	466	415	363	311	260	209	160	114	71	32	0
13	500	490	452	405	355	304	253	203	154	107	62	23	0
14		500	450	400	350	300	250	200	150	100	50	0	
15		Thermal Conductivities											
16		0.50	0.54	0.57	0.62	0.66	0.71	0.76	0.81	0.87	0.93	1.00	
17	0.50	0.53	0.57	0.61	0.65	0.69	0.73	0.78	0.83	0.88	0.93	0.98	1.00
18	0.52	0.56	0.59	0.63	0.67	8.71	0.75	0.80	0.84	0.89	0.93	0.97	1.00
19	0.54	0.58	0.62	0.65	0.69	0.73	0.77	0.81	0.85	0.89	0.93	0.97	1.00
20	0.56	0.60	0.64	0.67	0.71	0.75	0.79	0.82	0.86	0.90	0.93	0.97	1.00
21	0.57	0.62	0.65	0.69	0.73	0.76	0.80	0.83	0.87	0.90	0.94	0.97	1.00
22	0.59	0.63	0.67	0.70	0.74	0.77	0.81	0.84	0.87	0.91	0.94	0.97	1.00
23	0.62	0.65	0.69	0.72	0.75	0.78	0.82	0.85	0.88	0.91	0.94	0.97	1.00
24	0.64	0.67	0.70	0.73	0.76	0.79	0.82	0.86	0.89	0.92	0.95	0.97	1.00
25	0.66	0.69	0.71	0.74	0.77	0.80	0.83	0.86	0.89	0.92	0.95	0.98	1.00
26	0.68	0.70	0.72	0.75	0.78	0.81	0.84	0.87	0.90	0.92	0.95	0.98	1.00
27	0.71	0.71	0.73	0.76	0.78	0.81	0.84	0.87	0.90	0.93	0.96	0.98	1.00
		0.71	0.73	0.76	0.79	0.81	0.84	0.87	0.90	0.93	0.97	1.00	

A B C D E F G H I J K L M

	Cra	properties							
	mat	rix A			mat	rix B		Δt	1.00
2.0	-0.5	0.0	0.0	0.0	0.5	0.0	0.0	Δχ	1.00
-0.5	2.0	-0.5	0.0	0.5	0.0	0.5	0.0	ρ	1.00
0.0	-0.5	2.0	-0.5	0.0	0.5	0.0	0.5	С	1.00
0.0	0.0	-1.0	2.0	0.0	0.0	1.0	0.0	k	1.00
		calci	ulated	para	mete	er, <i>β=</i>	kΔt/($\rho C \Delta x^2$)	1.00

Crank-Nicholson time steps

calculated temperatures at each time step												
t=0	t=∆t	t=2∆t	t=3∆t	t=4∆t	t=5∆t	t=6∆t	t=7∆t	t=8∆t				
100	46.4	38.0	30.8	26.3	22.5	19.3	16.5	14.2				
100	85.6	66.3	56.7	48.3	41.5	35.6	30.6	26.2				
100	95.9	85.1	73.2	63.1	54.1	46.5	39.9	34.3				
100	97.9	90.5	79.1	68.1	58.6	50.3	43.2	37.1				

